

 Geometric Approach for Induction of Oblique
Decision Tree

Sonal P Patil ,Sonal V Badhe

GHRIEM, India

Abstract-In this paper we present new algorithm for oblique
deision tree induction. We propose new classifier that
performs better than the other decision tree approaches in
terms of accuracy, size, time. Proposed algorithm uses
geometric structure in the data for assessing the hyper planes.
At each node of the decision tree, we suggest the clustering
hyper planes for both the classes and using this representation
their angle bisectors is selected as split rule at that node. The
algorithm we present here is applicable for2-class and
multiclass problems. Through empirical investigation we
demonstrate that this idea leads to small decision trees and
better performance. We also present some analysis to show
that the angle bisectors of clustering hyperplanes that we use
as the split rules at each node are solutions of an interesting
optimization problem and hence argue that classifier obtained
with new approach is as good and novel classification method.

Keywords- oblique decision tree,CART,OC1,SVM,GDT

I. INTRODUCTION

A classification model is built form available data using the
known values of the variables and the known class. The
available data is called training set and class value is called
class label. Constructing the classification model is called
supervised learning. Then, given some previously unseen
data about an object or phenomenon whose class label is not
known, we use the classification model to determine its
class.
 There are many reasons why we may wish to set up a
classification procedure or develop a classification model.
• Such a procedure may be much faster than humans (postal

code reading).
• Procedure needs to be unbiased (credit applications where

humans may have bias)
• Accuracy (medical diagnosis).
• Supervisor may be a verdict of experts used for

developing the classification model.
 Some issues that must be considering in developing a
classifier are listed below:
Accuracy: represented as proportion of correct
classifications. However, some errors may be more serious
than others and it may be necessary to control different error
rates.
Speed: the speed of classification is important in some
applications (real time control systems). Sometimes there is
tradeoffs between accuracy and speed.
Comprehensibility of classification model especially when
humans are involved in decision making (medical
diagnosis).

Time to learn: the classification model from the training data,
e.g. in a battlefield where correct and fast classification is
necessary based on available data.
Decision tree can be explained a series of nested if-then-else
statements. Each non-leaf node has a predicate associated,
testing an attribute of data. Terminal node denotes class, or
category. To classify a data ,we have to traverse down the
tree by starting from root node ,testing predicates(test
attribute) and taking branches labelled with corresponding
value[2].
Decision tree classifiers have been popular in pattern
recognition, concept learning, and other AI branches. They
enable a divide-and-conquer strategy to be applied to
classification problems, and they enable context sensitive
feature-subset selection to tackle high-dimensionality
problems.
Decision tree cab be broadly classified into two types i.e.
axis parallel and oblique decision tree. Axis parallel decision
trees that take into account only a single attribute at a time
make splits parallel to the axis in the feature space of the
dataset. On the other hand, oblique decision trees split the
feature space by considering combinations of the attribute
values, be them linear or otherwise[5] .Oblique decision
trees have the potential to outperform regular decision trees
because with a smaller Number of splits an oblique hyper
plane can achieve better separation of the instances of data
that belong to different classes.
In a decision tree, each hyperplane at a nonleaf node should
split the data in such a way that it aids further classification;
the hyperplane itself need not be a good classifier at that
stage. In view of this, many classical top-down decision tree
learning algorithms are based on rating hyperplanes using
the so-called impurity measures. The main idea is given as
follows: Given the set of training patterns at a node and a
hyperplane, we know the set of patterns that go into the left
and right children of this node. If each of these two sets of
patterns have predominance of one class over others, then,
presumably, the hyperplane can be considered to have
contributed positively to further classification. At any stage
in the learning process, the level of purity of a node is some
measure of how skewed is the distribution of different
classes in the set of patterns landing at that node. If the class
distribution is nearly uniform, then the node is highly
impure; if the number of patterns of one class is much larger
than that of all others, then the purity of the node is high. The
impurity measures used in the algorithms give higher rating
to a hyperplane, which results in higher purity of child nodes.

Sonal P Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 197-201

www.ijcsit.com 197

The Gini index, entropy, and towing rule are some of the
frequently used impurity measures. Information gain is
based on Claude Shannon’s work on information theory,
which calculates the value of messages. Gain ratio biases the
decision tree against considering attributes with a large
number of distinct values. So it solves the drawback of
information gain [7]. Distance measure, like Gain ratio,
normalizes the gini index [3].
Here, in our tree-induction algorithm, we employ a
hypreplane and angel biseor as split rule
technique .Empirically, this oblique decision tree induction
algorithm is found to be effective optimization
problems .We show that using our algorithm, we learn
smaller decision trees with better classification accuracy
than is possible with other standard methods.
The rest of the paper is organized as follows. In Section II,
we present the complete details of the proposed algorithm.
Through empirical studies presented in Section III, we show
that the proposed algorithm learns compact and accurate
decision trees. In Section IV, we present a new pruning
technique, along with some simulation results to show its
effectiveness. Section V presents discussion and
conclusions.

II. INDUCTION ALGORITHM FOR OBLIQUE DECISION

TREE
The performance of any top-down decision tree algorithm
depends on the measure used to rate different hyperplanes at
each node and the split criteria. The problem of having a
suitable algorithm to find the hyperplane that optimizes the
chosen rating function is important. For all impurity
measures, the optimization is difficult because finding the
gradient of the impurity function with respect to the
parameters of the hyperplane is not possible, by these
considerations; we propose a new criterion function to
assess the suitability of a hyperplane at a node that can
capture the geometric structure of the class regions. For our
criterion function, the optimization problem can also be
solved more easily.
Proposed method can be applied for two class and multiclass
problem. We first explain our method by a two-class
problem. For the Given the set of training patterns at a node,
we first find two hyperplanes(one for each class). Each
hyperplane is such that it is closest to all patterns of one class
and is farthest from all patterns of the other class. We call
These as clustering hyperplanes (for the two classes). These
clustering hyperplanes capture the dominant linear
tendencies in the examples of each class that are useful for
discriminating between the classes. Hence, a hyperplane that
passes in between both of them could be good for splitting
the feature data space. Thus, we take the hyperplane that
bisects the angle between the clustering hyperplanes as the
split rule at this node. Since, in general, there would be two
angle bisectors, we choose the bisector that is better, based
on an impurity measure, i.e., the information gain. If the two
clustering hyperplanes happen to be parallel to each other,
then we take a hyperplane midway between the two as the
split rule.

A. Proposed Method for Two class Classification
Let S =�{(xi,yi) : xi�∈ Rd;yi�∈�{−1,1}, i = 1. . .n}, be the
training data set. Let C+ be the set of points for which yi = 1.
In addition, let C− be the set of points for which yi =�−1.
For an oblique decision tree learning algorithm, the main
computational task is given as follows: Given a set of data
points at a node, find the best hyperplane to split the data.
Let St be the set of points at node t. Let nt+ and nt− denote
the number of patterns of the two classes at that node. Let

 be the matrix containingt points of class C+ at

Node t as rows. Similarly, let be the matrix
whose rows contain points of class C− at node t. Let

 and be
the two be the two clustering hyperplanes. Hyperplane h1 is
to be closest to all points of class C+ and farthest from points
of class C−. Similarly, hyperplane h2 is to be closest to all
points of class C− and farthest from points of class C+. To
find the clustering hyperplanes, we use the idea as in
GEPSVM [3]. The nearness of a set of points to a
hyperplane is represented by the average of squared
distances.
The average of squared distances of points of class C+ from
a hyperplane wTx+b=0 is

D
+(w,b)=(1/) , where denotes

the standard Euclidean norm.

Let = and = . Then
wTxi+b=w~Tx~. The average of the squared distances of
points of class C− from h will be D−(w, b) and the average
of the squared distances of points of class C+ from h will be
D+(w, b). To find each clustering hyperplane, we need to
find h such that one of D+ or D− is maximized while
minimizing the other. T
he two clustering hyperplanes, which are specified by ˜w1 =
[wT

1 b1]
T and ˜w2 = [wT

2 b2]T , can be formalized as the
solution of optimization problems. Once we find clustering
hyperplanes, the hyperplane we associate with the current
node will be one of the angle bisectors of these two
hyperplanes. Let wT

3 x + b3 = 0 and wT
4 x + b4 =0 be the

angle bisectors of wT
1 x + b1 = 0 and wT

2 x + b2 = 0. Choose
the angle bisector that has a lower value of the information
gain. Let ˜wt be a hyperplane that is used for dividing the set
of patterns St in two parts Stl and Str .Let ntl

+and ntl
− denote

the number of patterns of the two classes in set Stl , and let
ntr

+ and ntr − denote the number of patterns of the two classes
in set Str .We choose w3 or w4 to be the split rule for St
based on which of the two gives lesser value of the
Information gain.
The complete algorithm can be described as : At any given
node, give the set of patterns St, we find the two clustering
hyperplanes (by solving the generalized eigenvalue value
problem) and choose one of the two angle bisectors, based
on the information gain, as the hyperplane to be associated
with this node. We then use this hyperplane to split St into
two sets, i.e., those that go into the left and right child nodes
of this node. We recursively do the same at the two child
nodes. The recursion stops when the set of patterns at a node
are such that the fraction of patterns belonging to the
minority class of this set are below a user-specified

Sonal P Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 197-201

www.ijcsit.com 198

threshold or the depth of the tree reaches a prespecified
maximum limit.

B. Proposed Method For Multiclass Classification
The algorithm presented in the previous section can be
easily generalized to handle the case when we have more
than two classes. Let S = {(xi, yi) : xi ∈ _d; yi ∈ {1, . . . , K} i
= 1. . . n} be the training data set, where K is the number of
classes. At a node t of the tree, we divide the set of points St
at that node in two subsets, i.e.,St+ and St− . St+ contains
points of the majority class in St, whereas St− contains the
rest of the points. We learn the tree as in the binary case
discussed earlier. The only difference here is that we use the
fraction of the points of the majority class to decide whether
a given node is a leaf node or not. A complete description of
the decision tree method for multiclass classification is
given in Algorithm 1. Algorithm 1 recursively calls the
procedure GrowTreeMulticlass(St), which will learn a split
rule for node t and return a subtree at that node.
Steps in implementation of novel approach:-
1. At any given node, given the set of patterns St,
2. We find the two clustering hyperplanes (by solving the

generalized eigenvalue value problem) and
3. Choose one of the two angle bisectors, based on the

Information gain, as the hyperplane to be associated
with this node.

4. We then use this hyperplane to split St into two sets, i.e.,
those that go into the left and right child nodes of this
node.

5. We then recursively do the same at the two child nodes.
6. The recursion stops when the set of patterns at a node are

such that the fraction of patterns belonging to the
minority class of this set are below a user-specified
threshold or the depth of the tree reaches a prespecified
maximum limit.

User-specified threshold will help to generates trees with
smaller depth with lesser number of leaves, compared with
other decision tree approaches.
So the method performs better than the other decision tree
approaches in terms of accuracy, size of the tree, and time.

Algorithm : Algorithm Multiclass
Input: S = {(xi, yi)}n

i=1, Max-Depth, 1
Output: Pointer to the root of a decision tree
begin
Root = GrowTreeMulticlass(S);
return Root;
end
GrowTreeMulticlass (St)
Input: Set of patterns at node t (St)
Output: Pointer to a subtree
begin
Divide set St in two parts, i.e., St

+ and St
− ;

St
+ contains points of the majority class, and St

−
contains points of the remaining classes;
Find matrix A corresponding to the points of St+;
Find matrix B corresponding to the points of St−;
Find ˜w1 and ˜w2, which are the solutions of optimization
problems (1) and (2);
Find angle bisectors ˜w3 and ˜w4 using (4);

Choose the angle bisectors having lesser information gain value.
Call it ˜w*;
Let ˜wt denotes the split rule at node t. Assign
˜wt ← ˜w*;

Let Stl = {xi ∈ St| ˜wT
t ˜x < 0} and Str = {xi St| ˜wT

t ˜x ≥ 0};
Define η1(St) = (max(nt

1, . . . , n
t
K))/(nt);

if (Tree-Depth = Max-Depth) then
Get a node tl, and make tl a leaf node;
Assign the class label associated to the majority
class to tl;
Make tl the left child of t;
else if (η1(S

tl) > 1 − _1) then
Get a node tl, and make tl a leaf node;
Assign the class label associated to the majority
class in set Stl to tl;
Make tl the left child of t;
else
tl = GrowTreeMulticlass(Stl);
Make tl the left child of t;
end
if (Tree-Depth = Max-Depth) then
Get a node tr, and make tr a leaf node;
Assign the class label associated to the majority
class to tr;
Make tl the right child of t;
else if (η1(Str) > 1 − _1) then
Get a node tr and make tr a leaf node;
Assign the class label associated to the majority
class in the set Str to tr;
Make tl the right child of t;
else
tr = GrowTreeMulticlass(Str);
Make tr the right child of t;
end
return t
end

III. ANALYSIS OF OBLIQUE DECISION TREE

CLASSIFIRES.
 The core idea of the CART-LC algorithm is how it finds
the value of δ that maximizes the goodness of split but the
limitations of algorithm are, CART-LC is fully deterministic
[6]. There is no built in mechanism for escaping local
minima, although such minima may be very common for
some domains. It produces only a single tree for given set of
data. There is no upper bound on the time spent at any node
in the decision tree. It halts when no perturbation changes
the impurity more than €,but because impurity may increase
and decrease, the algorithm can spend arbitrarily long time
at a node.
 OC1 uses multiple iterations which improves the
performance. The technique of perturbing the entire
hyperplane in the direction of randomly chosen vector is
good means for escaping from local minima. The oc1
algorithm produces remarkably small, accurate trees as
compared to CART-LC. The algorithm differ from
CART-LC as it can modify several coefficients at once
where as CART-LC modifies one coefficient of the
hyperplane at a time [10]. Breiman et al. report no upper
bound on the time it takes for a hyperplane to reach a
optimal position, where as OC1 accepts limited no of
perturbations.

Sonal P Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 197-201

www.ijcsit.com 199

SVM-ODT that exploits the benefits of multiple splits over
single attributes and combines them with Support Vector
Machine (SVM) techniques to take advantage of the
accuracy of combined splitting on correlated numeric
attributes. SVM system provides highly accurate
classification in diverse and changing environments. The
application of the particular ensemble algorithm is an
excellent fit for online-learning applications where one
seeks to improve performance of self-healing dependable
computing systems based on reconfiguration by gradually
and adaptively learning what constitutes good system
configurations. SVM is however; more appealing
theoretically and in practice, its strength is its power to
address non-linear classification task
The major strengths of SVM is the relatively easy training.
No local optimal. It scales relatively well to high
dimensional data .The trade-off between classifier
complexity and error can be controlled explicitly. The
weakness includes the need for a good kernel functionThe
results of OC1 compared to SVM-ODT are with lower
accuracy for overlapping datasets [5].
Classifier obtained with proposed algorithm is as good as
that with SVM, whereas it is faster than SVM. The
performance of proposed algorithm is comparable to that of
SVM in terms of accuracy. proposed algorithm performs
significantly better than SVM on 10 and 100-dimensional
synthetic data sets and the Balance Scale data set .The
algorithm is effective in terms of capturing the geometric
structure of the classification problem. For the first two
hyperplanes learned by proposed algorithm approach and
OC1 for 4 × 4 checkerboard data, It shows that proposed
algorithm approach learns the correct geometric structure of
the Classification boundary, whereas the OC1, which uses
the Gini index as impurity measure, does not capture that[7].
Also,In terms of the time taken to learn the classifier,
proposed algorithm is faster than SVM on majority of the
cases[7]. Time wise GDT algorithm is much faster than OC1
and CART.
The C4.5 algorithm basically used to implements Univariate
DT’s. AS Mutivariate DTs are advantageous.than
univatriate DTs, the C4.5 approach is stated that it can be
implemented for Mutivariate DT’s by using Linear Machine
approach, using the Absolute Error Correction and also the
Thermal perceptron rules[9].

IV. EXPERIMENTAL RESULTS
In this section, we present empirical results to show the
effectiveness of our decision tree learning algorithm. We
test the performance of our algorithm on several synthetic
and real data sets. We compare our results with among the
best state-of-art oblique decision tree algorithms ,OC1 [6]
and CART-LC [1]. We also compare our results with among
the best generic classifiers today, SVM classifier
 Data Set Description: We generated four synthetic data sets
in different dimensions, which are described here.
1) 2 × 2 checkerboard data set: 2000 points are sampled

uniformly from [−1 1] × [−1 1]. A point is labeled +1 if
it is in ([−1 0] × [0 1]) ∪ ([0 1] × [0 − 1]); otherwise, it
is labeled −1. Out of 2000 sampled points, 979 points
are labeled +1, and 1021 points are labeled −1. Now, all

the points are rotated by an angle of π/6 with respect to
the first axis in counterclockwise direction to form the
final training set.

2) 4 × 4 checkerboard data set: 2000 points are sampled
uniformly from [0 4] × [0 4]. This whole square is
divided into 16 unit squares having unit length in both
dimensions. These squares are given indexes ranging
from 1 to 4 on both axes.

Dataset Method Accuracy Time(sec) leaves depth

2X2
Checker
Board

New
approach

99±0.20 0.31 4 2

OC1 98±0.27 2.73±0.27 17.38±2.6 9.02±1.39

CART 96±2.62 2.43±3.33 26.15±3.1 9.97±0.96

4X4
Checker
Board

New
approach

94±0.52 0.16 16 4

OC1 93±0.46 4.14±0.44 82.83±6.3 15/14±1.6

CART 88±2.75 4.24±2.57 91.79±9.0 14.61±1.1

Table I-comparison results between our approach and
other classifiers.

If a point falls in a unit square such that the sum of its two
indices is even, then we assign label +1 to that point;
otherwise, we assign label −1 to it.Out of 2000 sampled
points, 997 points are labeled +1, and 1003 points are
labeled −1. Now, all the points are rotated by an angle of π/6
with respect to the first axis in counterclockwise direction.
Proposed algorithm has only one user-defined parameter,
which is є.For all our experiments, we have chosen є using
tenfold cross validation. SVM has two user-defined
parameters, i.e., penalty parameter C and the width
parameter σ for Gaussian kernel. The best values for these
parameters are found using fivefold cross validation, and the
results reported are with these parameters. Both OC1 and
CART use 90% of the total number of points for training and
10% points for pruning. OC1 needs two more user-defined
parameters. These parameters are the number of restarts R
and the number of random jumps J. For our experiments,
we have set R = 20 and J = 5, which are the default values
suggested in the package. For the cases where we use
GEPSVM with the Gaussian kernel, we found the best width
parameter σ using fivefold cross validation Simulation
Results: We now discuss the performance of propsed
algorithm in comparison with other approaches on different
data sets. The results provided are based on ten repetitions of
tenfold cross validation. We show the average values and
standard deviation (computed over the ten repetitions).
Table I shows the comparison results of proposed algorithm
with other decision tree approaches. In the table, we show
the average and standard deviation5 for the accuracy, size,
and depth of tree and the time taken for each of the
algorithms on each of the problems. We can intuitively take
the confidence interval of the estimated accuracy of an
algorithm to be one standard deviation on either side of the
average. Then, we can say that, on a problem, one algorithm
has significantly better accuracy than another if the
confidence interval for the accuracy of the first is completely
to the right of that of the second.

Sonal P Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 197-201

www.ijcsit.com 200

From Table I, we see that the average accuracy of proposed
algorithm is better than all the other decision tree algorithms,
proposed algorithm is significantly better than all the other
decision tree approaches. Thus, overall, in terms of accuracy,
the performance of the proposed algorithm is quiet good. In
majority of the cases, proposed algorithm generates trees
with smaller depth with lesser number of leaves, compared
with other decision tree approaches. This supports the idea
that our algorithm better exploits the geometric structure of
the data set while generating decision trees. Timewise
proposed algorithm algorithm is much faster than OC1 and
CART, as can be seen from the results in the table. In most
cases, the time taken by proposed algorithm is less by at least
a factor of ten. We feel that this is because the problem of
obtaining the best split rule at each node is solved using an
efficient linear algebra algorithm in case of proposed
algorithm, whereas these other approaches have to resort to
search techniques because optimizing impurity based
measures is tough.
At every node of the tree, we are solving a generalized
eigenvalue problem that takes time on the order of (d + 1)3,
where d is the dimension of the feature space. On the other
hand, SVM solves a quadratic program whose time
complexity is O(nk), where k is between 2 and 3 and n is the
number of points. Thus, in general, when the number of
points is large compared to the dimension of the feature
space, proposed algorithm learns the classifier faster than
SVM. By Experimental results we conclude that our
approach learns the correct geometric structure of the
classification boundary, whereas the OC1, which uses the
Gini index as impurity measure, does not capture that.
Although proposed algorithm gets the correct decision
boundary for the 4 × 4 chessboard data set its
crossvalidation accuracy is lesser than that of SVM. This
may be because the data here are dense, and hence,
numerical round-off errors can affect the classification of
points near the boundary. On the other hand, if we allow
some margin between the data points and the decision
boundary (by ensuring that all the sampled points are at least
0.05 distance away from the decision boundary), then we
observed that SVM and proposed algorithm both achieve
99.8% cross-validation accuracy.
In the proposed algorithm algorithm described in Section II,
є is a parameter. If more than (1 − є) fraction of the points
fall into the majority class, then we eclare that node as a leaf
node and assign the class label of the majority class to that
node. As we increase є, chances of any node to become a
leaf node will increase. This leads to smaller sized decision
trees, and the learning time also decreases. However, the
accuracy will suffer. We see that the cross-validation
accuracy does not change too much with є [5]. However,
with increasing є, the average number of leaves decrease.
Thus, even though the tree size decreases with є, the
cross-validation accuracy remains in a small interval.This
happens because, for most of the points, the decision is
governed by nodes closer to the root node. Few remaining
examples, which are tough to classify, lead the decision tree
to grow further. However, as the value of є increases, only
nodes containing these tough-to-classify points become leaf

nodes. We can say that є in the range of 0.1–0.3 would be
appropriate for all data sets[5].

V. CONCLUSION
Many different algorithms for induction of classifier models
if trained with a big and diverse enough dataset perform with
very high accuracy. But each has its own different strengths
and weaknesses. Some perform better over discrete data,
some with continuous, other classifiers have different
tolerance for noise, and they have different speed of
execution. Each algorithm focused on improving known
machine learning techniques by introducing new ways of
combining the strengths of different approaches to achieve
higher performance. CART-LC and OC1 are the basic
classifiers in which oc1 can perform better than
CART-LC.the new standard classifiers are SVM and GDT.
SVM provides highly accurate classification in diverse and
changing environments. GDT is faster than SVM and
performs significantly better than SVM in terms of
accuracy.

REFERENCES
[1] L. Breiman, J. Friedman, R. Olshen, And C. Stone, “Classification And

Regression Trees.” Belmont, Ca: Wadsworth And Brooks, 1984, Ser.
Statistics/Probability Series.

[2] J. Quinlan, “Induction Of Decision Trees,” Mach. Learn., Vol. 1, No. 1,
Pp. 81–106, 1986.

[3] K. P. Bennett And J. A. Blue, “A Support Vector Machine Approach To
Decision Trees,” In Proc. Ieee World Congr. Comput. Intell.,
Anchorage, Ak, May 1998, Vol. 3, Pp. 2396–2401.

[4]S. K. Murthy, S. Kasif, And S. Salzberg, “A System For Induction Of
Oblique Decision Trees,” J. Artif. Intell. Res., Vol. 2, No. 1, Pp. 1–32,
1994.

[5]Naresh Manwani And P. S. Sastry, “Geometric Decision Tree” , Ieee
Transactions On Systems, Man, And Cybernetics—Part B:
Cybernetics, Vol. 42, No. 1, February 2012

[6]Shesha Shah And P. S. Sastry,” New Algorithms For Learning And
Pruning Oblique Decision Trees” Ieee Transactions On Systems, Man,
And Cybernetics—Part C: Applications And Reviews, Vol. 29, No. 4,
November 1999

[7]Erick Cantú-Paz, Chandrika Kamath, “ Inducing Oblique Decision Trees
With Evolutionary Algorithms” . Ieee Transaction On Evolutionary
Computation, Vol. 7, No. 1, February 2003.

[8]Murthy, Kasif, Salzberg. “ A System For Induction Of Oblique Decision
Trees.” Journal Of Artificial Intelligence Research 2 (1994) 1-32

[9]Vlado Menkovski, Ioannis T. Christou, And Sofoklis Efremidis ,
“Oblique Decision Trees Using Embedded Support Vector Machines
In Classifier Ensembles” , Ieee Cybernetic Intelligent Systems (2008)
1-6

[10]Shreerama Murthy,Simon Kasif,Stivon Salzberg,Richard
Beigel,“ Oc1:Randomized Induction Of Oblique Decision Tree”

[11] Guy Michel, Jean Luc Lambert,Bruno Cremilleux & Michel
Henry-Amar, “A New Way To Build Oblique Decision Trees Using
Linear Programming”

[12] Thales sehn Korting, “C4.5 Algorithm And Mutivibrate Decision
Teees”

Son al Patil received the B.E. degree in Computer science and engineering
from NMU India, and the M.Tech. degree in software systems from Bhopal
University, India.. She is currently working as Assistant Professor in
GHRIEM, India. Her research interests are data mining, machine learning
and pattern recognition, computational
Neuroscience..
Son al Badhe received the B.E. degree in Computer science and
engineering from University of pune India, and she is currently working
toward the ME degree in the Department Computer science and
Engineering, GHRIEM ,Jalgaon, India. Her research interests are data

mining, machine learning and pattern recognition.

Sonal P Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 197-201

www.ijcsit.com 201

