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Abstract-In this paper we present new algorithm for oblique 
deision tree induction. We propose new classifier that 
performs better than the other decision tree approaches in 
terms of accuracy, size,  time. Proposed algorithm uses 
geometric structure in the data for assessing the hyper planes. 
At each node of the decision tree, we suggest the clustering 
hyper planes for both the classes and using this representation 
their angle bisectors is selected as split rule at that node. The 
algorithm we present here is applicable for2-class and 
multiclass problems. Through empirical investigation we 
demonstrate that this idea leads to small decision trees and 
better performance. We also present some analysis to show 
that the angle bisectors of clustering hyperplanes that we use 
as the split rules at each node are solutions of an interesting 
optimization problem and hence argue that classifier obtained 
with new approach is as good and novel classification method. 
 
Keywords- oblique decision tree,CART,OC1,SVM,GDT 

 
I. INTRODUCTION 

A classification model is built form available data using the 
known values of the variables and the known class. The 
available data is called training set and class value is called 
class label. Constructing the classification model is called 
supervised learning. Then, given some previously unseen 
data about an object or phenomenon whose class label is not 
known, we use the classification model to determine its 
class.  
   There are many reasons why we may wish to set up a 
classification procedure or develop a classification model.  
• Such a procedure may be much faster than humans (postal 

code reading).  
• Procedure needs to be unbiased (credit applications where 

humans may have bias) 
• Accuracy (medical diagnosis).  
• Supervisor may be a verdict of experts used for 

developing the classification model.  
    Some issues that must be considering in developing a 
classifier are listed below:  
Accuracy: represented as proportion of correct 
classifications. However, some errors may be more serious 
than others and it may be necessary to control different error 
rates.  
Speed: the speed of classification is important in some 
applications (real time control systems). Sometimes there is 
tradeoffs between accuracy and speed.  
Comprehensibility of classification model especially when 
humans are involved in decision making (medical 
diagnosis).  

Time to learn: the classification model from the training data, 
e.g. in a battlefield where correct and fast classification is 
necessary based on available data.  
Decision tree can be explained a series of nested if-then-else 
statements. Each non-leaf node has a predicate associated, 
testing an attribute of data. Terminal  node denotes class, or 
category. To classify a data ,we have to traverse down the 
tree by starting from root node ,testing predicates( test 
attribute) and taking branches labelled with corresponding 
value[2]. 
Decision tree classifiers have been popular in pattern 
recognition, concept learning, and other AI branches. They 
enable a divide-and-conquer strategy to be applied to 
classification problems, and they enable context sensitive 
feature-subset selection to tackle high-dimensionality 
problems.  
Decision tree cab be broadly classified into two types i.e. 
axis parallel and oblique decision tree. Axis parallel decision 
trees that take into account only a single attribute at a time 
make splits parallel to the axis in the feature space of the 
dataset. On the other hand, oblique decision trees split the 
feature space by considering combinations of the attribute 
values, be them linear or otherwise[5] .Oblique decision 
trees have the potential to outperform regular decision trees 
because with a smaller Number of splits an oblique hyper 
plane can achieve better separation of the instances of data 
that belong to different classes. 
In a decision tree, each hyperplane at a nonleaf node should 
split the data in such a way that it aids further classification; 
the hyperplane itself need not be a good classifier at that 
stage. In view of this, many classical top-down decision tree 
learning algorithms are based on rating hyperplanes using 
the so-called impurity measures.  The main idea is given as 
follows: Given the set of training patterns at a node and a 
hyperplane, we know the set of patterns that go into the left 
and right children of this node. If each of these two sets of 
patterns have predominance of one class over others, then, 
presumably, the hyperplane can be considered to have 
contributed positively to further classification. At any stage 
in the learning process, the level of purity of a node is some 
measure of how skewed is the distribution of different 
classes in the set of patterns landing at that node. If the class 
distribution is nearly uniform, then the node is highly 
impure; if the number of patterns of one class is much larger 
than that of all others, then the purity of the node is high. The 
impurity measures used in the algorithms give higher rating 
to a hyperplane, which results in higher purity of child nodes. 
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The Gini index, entropy, and towing rule are some of the 
frequently used impurity measures. Information gain is 
based on Claude Shannon’s work on information theory, 
which calculates the value of messages. Gain ratio biases the 
decision tree against considering attributes with a large 
number of distinct values. So it solves the drawback of 
information gain [7]. Distance measure, like Gain ratio, 
normalizes the gini index [3].  
Here, in our tree-induction algorithm, we employ a 
hypreplane and angel biseor as split rule 
technique .Empirically, this oblique decision tree induction 
algorithm is found to be effective optimization 
problems .We show that using our algorithm, we learn 
smaller decision trees with better classification accuracy 
than is possible with other standard methods.  
The rest of the paper is organized as follows. In Section II, 
we present the complete details of the proposed algorithm. 
Through empirical studies presented in Section III, we show 
that the proposed algorithm learns compact and accurate 
decision trees. In Section IV, we present a new pruning 
technique, along with some simulation results to show its 
effectiveness. Section V presents discussion and 
conclusions. 

 
II. INDUCTION ALGORITHM FOR OBLIQUE DECISION 

TREE 
The performance of any top-down decision tree algorithm 
depends on the measure used to rate different hyperplanes at 
each node and the split criteria. The problem of having a 
suitable algorithm to find the hyperplane that optimizes the 
chosen rating function is important. For all impurity 
measures, the optimization is difficult because finding the 
gradient of the impurity function with respect to the 
parameters of the hyperplane is not possible, by these 
considerations; we propose a new criterion function to 
assess the suitability of a hyperplane at a node that can 
capture the geometric structure of the class regions. For our 
criterion function, the optimization problem can also be 
solved more easily.  
Proposed method can be applied for two class and multiclass 
problem. We first explain our method by a two-class 
problem. For the Given the set of training patterns at a node, 
we first find two hyperplanes(one for each class). Each 
hyperplane is such that it is closest to all patterns of one class 
and is farthest from all patterns of the other class. We call 
These as clustering hyperplanes (for the two classes). These 
clustering hyperplanes capture the dominant linear 
tendencies in the examples of each class that are useful for 
discriminating between the classes. Hence, a hyperplane that 
passes in between both of them could be good for splitting 
the feature data space. Thus, we take the hyperplane that 
bisects the angle between the clustering hyperplanes as the 
split rule at this node. Since, in general, there would be two 
angle bisectors, we choose the bisector that is better, based 
on an impurity measure, i.e., the information gain. If the two 
clustering hyperplanes happen to be parallel to each other, 
then we take a hyperplane midway between the two as the 
split rule.  
 
 

A. Proposed Method for Two class Classification 
Let S =�{(xi,yi) : xi�∈ Rd;yi�∈�{−1,1}, i = 1. . .n}, be the  
training data set. Let C+ be the set of points for which yi = 1. 
In addition, let C− be the set of points for which yi =�−1. 
For an oblique decision tree learning algorithm, the main 
computational task is given as follows: Given a set of data 
points at a node, find the best hyperplane to split the data. 
Let St be the set of points at node t. Let nt+ and nt− denote 
the number of patterns of the two classes at that node. Let 

  be the matrix containingt points of class C+ at  

Node t as rows.  Similarly, let  be the matrix 
whose rows contain points of class C− at node t. Let 

 and be 
the two   be the two clustering hyperplanes. Hyperplane h1 is 
to be closest to all points of class C+ and farthest from points 
of class C−. Similarly, hyperplane h2 is to be closest to all 
points of class C− and farthest from points of class C+. To 
find the clustering hyperplanes, we use the idea as in 
GEPSVM [3]. The nearness of a set of points to a 
hyperplane is represented by the average of squared 
distances.  
The average of squared distances of points of class C+ from 
a hyperplane wTx+b=0  is  

D 
+(w,b)=(1/ )  , where  denotes 

the standard Euclidean norm.  

Let =  and = . Then 
wTxi+b=w~Tx~. The average of the squared distances of 
points of class C− from h will be D−(w, b) and the average 
of the squared distances of points of class C+ from h will be 
D+(w, b). To find each clustering hyperplane, we need to 
find h such that one of D+ or D− is maximized while 
minimizing the other. T 
he two clustering hyperplanes, which are specified by ˜w1 = 
[wT

1 b1 ]
T and  ˜w2 = [wT

2 b2 ]T , can be formalized as the 
solution of optimization problems. Once we find clustering 
hyperplanes, the hyperplane we associate with the current 
node will be one of the angle bisectors of these two 
hyperplanes. Let  wT

3 x + b3 = 0 and wT
4 x + b4 =0  be the 

angle bisectors of wT
1 x + b1 = 0  and  wT

2 x + b2 = 0. Choose 
the angle bisector that has a lower value of the information 
gain. Let ˜wt be a hyperplane that is used for dividing the set 
of patterns St in two parts Stl and Str .Let ntl

+and ntl
− denote 

the number of patterns of the two classes in set Stl , and let 
ntr

+ and ntr − denote the number of patterns of the two classes 
in set Str .We  choose w3 or w4 to be the split rule for St 
based on which of  the two gives lesser value of the 
Information gain. 
The complete algorithm can be described as : At any given 
node, give the set of patterns St, we  find the two clustering 
hyperplanes (by solving the generalized eigenvalue value 
problem) and choose one of the two angle  bisectors, based 
on the information gain, as the hyperplane to be associated 
with this node. We then use this hyperplane to split St into 
two sets, i.e., those that go into the left and right child nodes 
of this node. We recursively do the same at the two child 
nodes. The recursion stops when the set of patterns at a node 
are such that the fraction of patterns belonging to the 
minority class of this set are below a user-specified 
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threshold or the depth of the tree reaches a prespecified 
maximum limit.  
 
B. Proposed Method For Multiclass Classification 
The algorithm presented in the previous section can be 
easily generalized to handle the case when we have more 
than two classes. Let S = {(xi, yi) : xi ∈ _d; yi ∈ {1, . . . , K} i 
= 1. . . n} be the training data set, where K is the number of 
classes. At a node t of the tree, we divide the set of points St 
at that node in two subsets, i.e.,St+ and St−  . St+ contains 
points of the majority class in St, whereas St−  contains the 
rest of the points. We learn the tree as in the binary case 
discussed earlier. The only difference here is that we use the 
fraction of the points of the majority class to decide whether 
a given node is a leaf node or not. A complete description of 
the decision tree method for multiclass classification is 
given in Algorithm 1. Algorithm 1 recursively calls the 
procedure GrowTreeMulticlass(St), which will learn a split 
rule for node t and return a subtree at that node.  
Steps in implementation of novel approach:- 
1. At any given node, given the set of patterns St,  
2. We find the two clustering hyperplanes (by solving the 

generalized  eigenvalue value problem) and  
3. Choose one of the two angle bisectors, based on the 

Information gain, as the hyperplane to be associated 
with this node. 

4. We then use this hyperplane to split St into two sets, i.e., 
those that go into the left and right child nodes of this 
node.  

5. We then recursively do the same at the two child nodes.  
6. The recursion stops when the set of patterns at a node are 

such that the fraction of patterns belonging to the 
minority class of this set are below a user-specified 
threshold or the depth of the tree reaches a prespecified 
maximum limit.  

User-specified threshold will help to generates trees with 
smaller depth with lesser number of leaves, compared with 
other decision tree approaches.  
So the method performs better than the other decision tree 
approaches in terms of accuracy, size of the tree, and time. 
 
Algorithm : Algorithm Multiclass  
Input: S = {(xi, yi)}n 

i=1, Max-Depth, 1 
Output: Pointer to the root of a decision tree 
begin 
Root = GrowTreeMulticlass(S); 
return Root; 
end 
GrowTreeMulticlass (St) 
Input: Set of patterns at node t (St) 
Output: Pointer to a subtree 
begin 
Divide set St in two parts, i.e., St

+ and St
− ; 

St
+ contains points of the majority class, and St

− 
contains points of the remaining classes; 
Find matrix A corresponding to the points of St+; 
Find matrix B corresponding to the points of St−; 
Find ˜w1 and ˜w2, which are the solutions of optimization 
problems (1) and (2); 
Find angle bisectors ˜w3 and ˜w4 using (4); 

Choose the angle bisectors having lesser information gain value. 
Call it ˜w*; 
Let ˜wt denotes the split rule at node t. Assign 
˜wt ← ˜w*; 

Let Stl = {xi ∈ St| ˜wT
t ˜x < 0} and Str = {xi St| ˜wT

t ˜x ≥ 0}; 
Define η1(St) = (max(nt

1, . . . , n
t
K))/(nt); 

if (Tree-Depth = Max-Depth) then 
Get a node tl, and make tl a leaf node; 
Assign the class label associated to the majority 
class to tl; 
Make tl the left child of t; 
else if (η1(S

tl ) > 1 − _1) then 
Get a node tl, and make tl a leaf node; 
Assign the class label associated to the majority 
class in set Stl to tl; 
Make tl the left child of t; 
else 
tl = GrowTreeMulticlass(Stl ); 
Make tl the left child of t; 
end 
if (Tree-Depth = Max-Depth) then 
Get a node tr, and make tr a leaf node; 
Assign the class label associated to the majority 
class to tr; 
Make tl the right child of t; 
else if (η1(Str ) > 1 − _1) then 
Get a node tr  and make tr a leaf node; 
Assign the class label associated to the majority 
class in the set Str to tr; 
Make tl the right child of t; 
else 
tr = GrowTreeMulticlass(Str ); 
Make tr the right child of t; 
end 
return t 
end 
 

III. ANALYSIS OF OBLIQUE DECISION TREE 

CLASSIFIRES. 
    The core idea of the CART-LC algorithm is how it finds 
the value of δ that maximizes the goodness of split but the 
limitations of algorithm are, CART-LC is fully deterministic 
[6]. There is no built in mechanism for escaping local 
minima, although such minima may be very common for 
some domains. It produces only a single tree for given set of 
data. There is no upper bound on the time spent at any node 
in the decision tree. It halts when no perturbation changes 
the impurity more than €,but because impurity may increase 
and decrease, the algorithm can spend arbitrarily long time 
at a node. 
     OC1 uses multiple iterations which improves the 
performance. The technique of perturbing the entire 
hyperplane in the direction of randomly chosen vector is 
good means for escaping from local minima. The oc1 
algorithm produces remarkably small, accurate trees as 
compared to CART-LC. The algorithm differ from 
CART-LC as it can modify several coefficients at once 
where as CART-LC modifies one coefficient of the 
hyperplane at a time [10]. Breiman et al. report no upper 
bound on the time it takes for a hyperplane to reach a 
optimal position, where as OC1 accepts limited no of 
perturbations. 
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SVM-ODT that exploits the benefits of multiple splits over 
single attributes and combines them with Support Vector 
Machine (SVM) techniques to take advantage of the 
accuracy of combined splitting on correlated numeric 
attributes. SVM system provides highly accurate 
classification in diverse and changing environments. The 
application of the particular ensemble algorithm is an 
excellent fit for online-learning applications where one 
seeks to improve performance of self-healing dependable 
computing systems based on reconfiguration by gradually 
and adaptively learning what constitutes good system 
configurations. SVM is however; more appealing 
theoretically and in practice, its strength is its power to 
address non-linear classification task 
The major strengths of SVM is the relatively easy training. 
No local optimal. It scales relatively well to high 
dimensional data .The trade-off between classifier 
complexity and error can be controlled explicitly. The 
weakness includes the need for a good kernel functionThe 
results of OC1 compared to SVM-ODT are with lower 
accuracy for overlapping datasets [5]. 
Classifier obtained with proposed algorithm is as good as 
that with SVM, whereas it is faster than SVM. The 
performance of proposed algorithm is comparable to that of 
SVM in terms of accuracy. proposed algorithm performs 
significantly better than SVM on 10 and 100-dimensional 
synthetic data sets and the Balance Scale data set .The 
algorithm is effective in terms of capturing the geometric 
structure of the classification problem. For the first two 
hyperplanes learned by proposed algorithm approach and 
OC1 for 4 × 4 checkerboard data, It shows that proposed 
algorithm approach learns the correct geometric structure of 
the Classification boundary, whereas the OC1, which uses 
the Gini index as impurity measure, does not capture that[7]. 
Also,In terms of the time taken to learn the classifier, 
proposed algorithm is faster than SVM on majority of the 
cases[7]. Time wise GDT algorithm is much faster than OC1 
and CART. 
The C4.5 algorithm basically used to implements Univariate 
DT’s. AS Mutivariate DTs are advantageous.than  
univatriate DTs, the C4.5  approach is  stated that it can be 
implemented for Mutivariate DT’s by using Linear Machine 
approach, using the Absolute Error Correction and also the 
Thermal perceptron rules[9]. 
 

IV. EXPERIMENTAL RESULTS 
In this section, we present empirical results to show the 
effectiveness of our decision tree learning algorithm. We 
test the performance of our algorithm on several synthetic 
and real data sets. We compare our results with among the 
best state-of-art oblique decision tree algorithms ,OC1 [6] 
and CART-LC [1]. We also compare our results with among 
the best generic classifiers today, SVM classifier 
 Data Set Description: We generated four synthetic data sets 
in different dimensions, which are described here. 
1) 2 × 2 checkerboard data set: 2000 points are sampled 

uniformly from [−1 1] × [−1 1]. A point is labeled +1 if 
it is in ([−1 0] × [0 1]) ∪ ([0 1] × [0 − 1]); otherwise, it 
is labeled −1. Out of 2000 sampled points, 979 points 
are labeled +1, and 1021 points are labeled −1. Now, all 

the points are rotated by an angle of π/6 with respect to 
the first axis in counterclockwise direction to form the 
final training set. 

2) 4 × 4 checkerboard data set: 2000 points are sampled 
uniformly from [0 4] × [0 4]. This whole square is 
divided into 16 unit squares having unit length in both 
dimensions. These squares are given indexes ranging 
from 1 to 4 on both axes.  

 

Dataset Method Accuracy Time(sec) leaves depth 

2X2 
Checker 
Board 

New 
approach 

99±0.20 0.31 4 2 

OC1 98±0.27 2.73±0.27 17.38±2.6 9.02±1.39 

CART 96±2.62 2.43±3.33 26.15±3.1 9.97±0.96 

4X4 
Checker 
Board 

New 
approach 

94±0.52 0.16 16 4 

OC1 93±0.46 4.14±0.44 82.83±6.3 15/14±1.6 

CART 88±2.75 4.24±2.57 91.79±9.0 14.61±1.1 

Table I-comparison results between our approach and 
other classifiers. 

 
If a point falls in a unit square such that the sum of its two 
indices is even, then we assign label +1 to that point; 
otherwise, we assign label −1 to it.Out of 2000 sampled 
points, 997 points are labeled +1, and 1003 points are 
labeled −1. Now, all the points are rotated by an angle of π/6 
with respect to the first axis in counterclockwise direction. 
Proposed algorithm has only one user-defined parameter, 
which is є.For all our experiments, we have chosen є using 
tenfold cross validation. SVM has two user-defined 
parameters, i.e., penalty parameter C and the width 
parameter σ for Gaussian kernel. The best values for these 
parameters are found using fivefold cross validation, and the 
results reported are with these parameters. Both OC1 and 
CART use 90% of the total number of points for training and 
10% points for pruning. OC1 needs two more user-defined 
parameters. These parameters are the number of restarts R 
and the  number of random jumps J. For our experiments, 
we have set R = 20 and J = 5, which are the default values 
suggested in the package. For the cases where we use 
GEPSVM with the Gaussian kernel, we found the best width 
parameter σ using fivefold cross validation Simulation 
Results: We now discuss the performance of  propsed 
algorithm  in comparison with other approaches on different 
data sets. The results provided are based on ten repetitions of 
tenfold cross validation. We show the average values and 
standard deviation (computed over the ten repetitions).  
Table I shows the comparison results of proposed algorithm 
with other decision tree approaches. In the table, we show 
the average and standard deviation5 for the accuracy, size, 
and depth of tree and the time taken for each of the 
algorithms on each of the problems. We can intuitively take 
the confidence interval of the estimated accuracy of an 
algorithm to be one standard deviation on either side of the 
average. Then, we can say that, on a problem, one algorithm 
has significantly better accuracy than another if the 
confidence interval for the accuracy of the first is completely 
to the right of that of the second. 
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From Table I, we see that the average accuracy of proposed 
algorithm is better than all the other decision tree  algorithms, 
proposed algorithm is significantly better than all the other 
decision tree approaches. Thus, overall, in terms of accuracy, 
the performance of the proposed algorithm is quiet good. In 
majority of the cases, proposed algorithm generates trees 
with smaller depth with lesser number of leaves, compared 
with other decision tree approaches. This supports the idea 
that our algorithm better exploits the geometric structure of 
the data set while generating decision trees. Timewise 
proposed algorithm algorithm is much faster than OC1 and 
CART, as can be seen from the results in the table. In most 
cases, the time taken by proposed algorithm is less by at least 
a factor of ten. We feel that this is because the problem of 
obtaining the best split rule at each node is solved using an 
efficient linear algebra algorithm in case of proposed 
algorithm, whereas these other approaches have to resort to 
search techniques because optimizing impurity based 
measures is tough.  
At every node of the tree, we are solving a generalized 
eigenvalue problem that takes time on the order of (d + 1)3, 
where d is the dimension of the feature space. On the other 
hand, SVM solves a quadratic program whose time 
complexity is O(nk), where k is between 2 and 3 and n is the 
number of points. Thus, in general, when the number of 
points is large compared to the dimension of the feature 
space, proposed algorithm learns the classifier faster than 
SVM. By Experimental results we conclude that our 
approach learns the correct geometric structure of the 
classification boundary, whereas the OC1, which uses the 
Gini index as impurity measure, does not capture that. 
Although proposed algorithm  gets the correct decision 
boundary for the 4 × 4 chessboard data set its 
crossvalidation accuracy is lesser than that of SVM. This 
may be because the data here are dense, and hence, 
numerical round-off errors can affect the  classification of 
points near the boundary. On the other hand, if we allow 
some margin between the data points and the decision 
boundary (by ensuring that all the sampled points are at least 
0.05 distance away from the decision boundary), then we 
observed that SVM and proposed algorithm both achieve 
99.8% cross-validation accuracy.  
In the proposed algorithm algorithm described in Section II, 
є is a parameter. If more than (1 − є) fraction of the points 
fall into the majority class, then we  eclare that node as a leaf 
node and assign the class label of the majority class to that 
node. As we increase є, chances of any node to become a 
leaf node will increase. This leads to smaller sized decision 
trees, and the learning time also decreases. However, the 
accuracy will suffer. We see that the cross-validation 
accuracy does not change too much with є [5]. However, 
with increasing є, the average number of leaves decrease. 
Thus, even though the tree size decreases with є, the 
cross-validation accuracy remains in a small interval.This 
happens because, for most of the points, the decision is 
governed by nodes closer to the root node. Few remaining 
examples, which are tough to classify, lead the decision tree 
to grow further. However, as the value of є increases, only 
nodes containing these tough-to-classify points become leaf 

nodes. We can say that є in the range of 0.1–0.3 would be 
appropriate for all data sets[5]. 
 

V. CONCLUSION 
Many different algorithms for induction of classifier models 
if trained with a big and diverse enough dataset perform with 
very high accuracy. But each has its own different strengths 
and weaknesses. Some perform better over discrete data, 
some with continuous, other classifiers have different 
tolerance for noise, and they have different speed of 
execution. Each algorithm focused on improving known 
machine learning techniques by introducing new ways of 
combining the strengths of different approaches to achieve 
higher performance. CART-LC and OC1 are the basic 
classifiers in which oc1 can perform better than 
CART-LC.the new standard classifiers are SVM and GDT. 
SVM provides highly accurate classification in diverse and 
changing environments. GDT is faster than SVM and 
performs significantly better than SVM in terms of 
accuracy. 
 

REFERENCES 
[1] L. Breiman, J. Friedman, R. Olshen, And C. Stone, “Classification And 

Regression Trees.” Belmont, Ca: Wadsworth And Brooks, 1984, Ser. 
Statistics/Probability Series. 

[2] J. Quinlan, “Induction Of Decision Trees,” Mach. Learn., Vol. 1, No. 1, 
Pp. 81–106, 1986. 

[3] K. P. Bennett And J. A. Blue, “A Support Vector Machine Approach To 
Decision Trees,” In Proc. Ieee World Congr. Comput. Intell., 
Anchorage, Ak, May 1998, Vol. 3, Pp. 2396–2401. 

[4]S. K. Murthy, S. Kasif, And S. Salzberg, “A System For Induction Of 
Oblique Decision Trees,” J. Artif. Intell. Res., Vol. 2, No. 1, Pp. 1–32, 
1994. 

[5]Naresh Manwani And P. S. Sastry, “Geometric Decision Tree” , Ieee 
Transactions On Systems, Man, And Cybernetics—Part B: 
Cybernetics, Vol. 42, No. 1, February 2012 

[6]Shesha Shah And P. S. Sastry,” New Algorithms For Learning And 
Pruning Oblique Decision Trees” Ieee Transactions On Systems, Man, 
And Cybernetics—Part C: Applications And Reviews, Vol. 29, No. 4, 
November 1999 

[7]Erick Cantú-Paz, Chandrika Kamath, “ Inducing Oblique Decision Trees 
With Evolutionary Algorithms” . Ieee Transaction On Evolutionary 
Computation, Vol. 7, No. 1, February 2003. 

[8]Murthy, Kasif, Salzberg. “ A System For Induction Of Oblique Decision 
Trees.”  Journal Of Artificial Intelligence Research 2 (1994) 1-32 

[9]Vlado Menkovski, Ioannis T. Christou, And Sofoklis Efremidis , 
“Oblique Decision Trees Using Embedded Support Vector Machines 
In Classifier Ensembles” , Ieee  Cybernetic Intelligent Systems (2008) 
1-6 

[10]Shreerama Murthy,Simon Kasif,Stivon Salzberg,Richard 
Beigel,“ Oc1:Randomized Induction Of Oblique Decision Tree” 

[11] Guy Michel, Jean Luc Lambert,Bruno Cremilleux & Michel 
Henry-Amar, “A New Way To Build Oblique Decision Trees Using 
Linear Programming” 

[12] Thales sehn Korting, “C4.5 Algorithm And Mutivibrate Decision 
Teees” 

 
Son al Patil received the B.E. degree in Computer science and engineering 
from NMU India, and the M.Tech. degree in software systems  from Bhopal 
University, India.. She is currently working as Assistant Professor in 
GHRIEM, India. Her research interests are data mining, machine learning 
and pattern recognition, computational 
Neuroscience..  
Son al Badhe received the B.E. degree in Computer science and 
engineering from University of pune India, and she is currently working 
toward the ME degree in the Department Computer science and 
Engineering, GHRIEM ,Jalgaon, India. Her research interests are data 

mining, machine learning and pattern recognition.  
 

Sonal P Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 197-201

www.ijcsit.com 201




